Copied to
clipboard

G = C6xC22:A4order 288 = 25·32

Direct product of C6 and C22:A4

direct product, metabelian, soluble, monomial, A-group

Aliases: C6xC22:A4, C25:3C32, (C22xC6):3A4, C22:2(C6xA4), (C23xC6):8C6, C23:4(C3xA4), C24:5(C3xC6), (C24xC6):2C3, (C2xC6):2(C2xA4), SmallGroup(288,1042)

Series: Derived Chief Lower central Upper central

C1C24 — C6xC22:A4
C1C22C24C23xC6C3xC22:A4 — C6xC22:A4
C24 — C6xC22:A4
C1C6

Generators and relations for C6xC22:A4
 G = < a,b,c,d,e,f | a6=b2=c2=d2=e2=f3=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, fbf-1=bc=cb, bd=db, be=eb, cd=dc, ce=ec, fcf-1=b, fdf-1=de=ed, fef-1=d >

Subgroups: 1044 in 324 conjugacy classes, 36 normal (10 characteristic)
C1, C2, C2, C3, C3, C22, C22, C6, C6, C23, C23, C32, A4, C2xC6, C2xC6, C24, C24, C3xC6, C2xA4, C22xC6, C22xC6, C25, C3xA4, C22:A4, C23xC6, C23xC6, C6xA4, C2xC22:A4, C24xC6, C3xC22:A4, C6xC22:A4
Quotients: C1, C2, C3, C6, C32, A4, C3xC6, C2xA4, C3xA4, C22:A4, C6xA4, C2xC22:A4, C3xC22:A4, C6xC22:A4

Smallest permutation representation of C6xC22:A4
On 36 points
Generators in S36
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)
(7 10)(8 11)(9 12)(19 22)(20 23)(21 24)(25 28)(26 29)(27 30)(31 34)(32 35)(33 36)
(1 4)(2 5)(3 6)(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)(25 28)(26 29)(27 30)
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 34)(8 35)(9 36)(10 31)(11 32)(12 33)
(7 34)(8 35)(9 36)(10 31)(11 32)(12 33)(19 27)(20 28)(21 29)(22 30)(23 25)(24 26)
(1 31 21)(2 32 22)(3 33 23)(4 34 24)(5 35 19)(6 36 20)(7 26 16)(8 27 17)(9 28 18)(10 29 13)(11 30 14)(12 25 15)

G:=sub<Sym(36)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (7,10)(8,11)(9,12)(19,22)(20,23)(21,24)(25,28)(26,29)(27,30)(31,34)(32,35)(33,36), (1,4)(2,5)(3,6)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,28)(26,29)(27,30), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,34)(8,35)(9,36)(10,31)(11,32)(12,33), (7,34)(8,35)(9,36)(10,31)(11,32)(12,33)(19,27)(20,28)(21,29)(22,30)(23,25)(24,26), (1,31,21)(2,32,22)(3,33,23)(4,34,24)(5,35,19)(6,36,20)(7,26,16)(8,27,17)(9,28,18)(10,29,13)(11,30,14)(12,25,15)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (7,10)(8,11)(9,12)(19,22)(20,23)(21,24)(25,28)(26,29)(27,30)(31,34)(32,35)(33,36), (1,4)(2,5)(3,6)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,28)(26,29)(27,30), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,34)(8,35)(9,36)(10,31)(11,32)(12,33), (7,34)(8,35)(9,36)(10,31)(11,32)(12,33)(19,27)(20,28)(21,29)(22,30)(23,25)(24,26), (1,31,21)(2,32,22)(3,33,23)(4,34,24)(5,35,19)(6,36,20)(7,26,16)(8,27,17)(9,28,18)(10,29,13)(11,30,14)(12,25,15) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36)], [(7,10),(8,11),(9,12),(19,22),(20,23),(21,24),(25,28),(26,29),(27,30),(31,34),(32,35),(33,36)], [(1,4),(2,5),(3,6),(13,16),(14,17),(15,18),(19,22),(20,23),(21,24),(25,28),(26,29),(27,30)], [(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,34),(8,35),(9,36),(10,31),(11,32),(12,33)], [(7,34),(8,35),(9,36),(10,31),(11,32),(12,33),(19,27),(20,28),(21,29),(22,30),(23,25),(24,26)], [(1,31,21),(2,32,22),(3,33,23),(4,34,24),(5,35,19),(6,36,20),(7,26,16),(8,27,17),(9,28,18),(10,29,13),(11,30,14),(12,25,15)]])

48 conjugacy classes

class 1 2A2B···2K3A3B3C···3H6A6B6C···6V6W···6AB
order122···2333···3666···66···6
size113···31116···16113···316···16

48 irreducible representations

dim1111113333
type++++
imageC1C2C3C3C6C6A4C2xA4C3xA4C6xA4
kernelC6xC22:A4C3xC22:A4C2xC22:A4C24xC6C22:A4C23xC6C22xC6C2xC6C23C22
# reps116262551010

Matrix representation of C6xC22:A4 in GL6(F7)

300000
030000
003000
000600
000060
000006
,
100000
060000
306000
000100
000060
000006
,
600000
060000
421000
000600
000060
000001
,
600000
010000
056000
000100
000010
000001
,
100000
060000
306000
000100
000010
000001
,
020000
633000
004000
000010
000001
000100

G:=sub<GL(6,GF(7))| [3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,6,0,0,0,0,0,0,6,0,0,0,0,0,0,6],[1,0,3,0,0,0,0,6,0,0,0,0,0,0,6,0,0,0,0,0,0,1,0,0,0,0,0,0,6,0,0,0,0,0,0,6],[6,0,4,0,0,0,0,6,2,0,0,0,0,0,1,0,0,0,0,0,0,6,0,0,0,0,0,0,6,0,0,0,0,0,0,1],[6,0,0,0,0,0,0,1,5,0,0,0,0,0,6,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,3,0,0,0,0,6,0,0,0,0,0,0,6,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,6,0,0,0,0,2,3,0,0,0,0,0,3,4,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0] >;

C6xC22:A4 in GAP, Magma, Sage, TeX

C_6\times C_2^2\rtimes A_4
% in TeX

G:=Group("C6xC2^2:A4");
// GroupNames label

G:=SmallGroup(288,1042);
// by ID

G=gap.SmallGroup(288,1042);
# by ID

G:=PCGroup([7,-2,-3,-3,-2,2,-2,2,514,956,3036,5305]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^6=b^2=c^2=d^2=e^2=f^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,f*b*f^-1=b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,f*c*f^-1=b,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<