Copied to
clipboard

G = C6×C22⋊A4order 288 = 25·32

Direct product of C6 and C22⋊A4

direct product, metabelian, soluble, monomial, A-group

Aliases: C6×C22⋊A4, C253C32, (C22×C6)⋊3A4, C222(C6×A4), (C23×C6)⋊8C6, C234(C3×A4), C245(C3×C6), (C24×C6)⋊2C3, (C2×C6)⋊2(C2×A4), SmallGroup(288,1042)

Series: Derived Chief Lower central Upper central

C1C24 — C6×C22⋊A4
C1C22C24C23×C6C3×C22⋊A4 — C6×C22⋊A4
C24 — C6×C22⋊A4
C1C6

Generators and relations for C6×C22⋊A4
 G = < a,b,c,d,e,f | a6=b2=c2=d2=e2=f3=1, ab=ba, ac=ca, ad=da, ae=ea, af=fa, fbf-1=bc=cb, bd=db, be=eb, cd=dc, ce=ec, fcf-1=b, fdf-1=de=ed, fef-1=d >

Subgroups: 1044 in 324 conjugacy classes, 36 normal (10 characteristic)
C1, C2, C2, C3, C3, C22, C22, C6, C6, C23, C23, C32, A4, C2×C6, C2×C6, C24, C24, C3×C6, C2×A4, C22×C6, C22×C6, C25, C3×A4, C22⋊A4, C23×C6, C23×C6, C6×A4, C2×C22⋊A4, C24×C6, C3×C22⋊A4, C6×C22⋊A4
Quotients: C1, C2, C3, C6, C32, A4, C3×C6, C2×A4, C3×A4, C22⋊A4, C6×A4, C2×C22⋊A4, C3×C22⋊A4, C6×C22⋊A4

Smallest permutation representation of C6×C22⋊A4
On 36 points
Generators in S36
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)
(7 10)(8 11)(9 12)(19 22)(20 23)(21 24)(25 28)(26 29)(27 30)(31 34)(32 35)(33 36)
(1 4)(2 5)(3 6)(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)(25 28)(26 29)(27 30)
(1 13)(2 14)(3 15)(4 16)(5 17)(6 18)(7 34)(8 35)(9 36)(10 31)(11 32)(12 33)
(7 34)(8 35)(9 36)(10 31)(11 32)(12 33)(19 27)(20 28)(21 29)(22 30)(23 25)(24 26)
(1 31 21)(2 32 22)(3 33 23)(4 34 24)(5 35 19)(6 36 20)(7 26 16)(8 27 17)(9 28 18)(10 29 13)(11 30 14)(12 25 15)

G:=sub<Sym(36)| (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (7,10)(8,11)(9,12)(19,22)(20,23)(21,24)(25,28)(26,29)(27,30)(31,34)(32,35)(33,36), (1,4)(2,5)(3,6)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,28)(26,29)(27,30), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,34)(8,35)(9,36)(10,31)(11,32)(12,33), (7,34)(8,35)(9,36)(10,31)(11,32)(12,33)(19,27)(20,28)(21,29)(22,30)(23,25)(24,26), (1,31,21)(2,32,22)(3,33,23)(4,34,24)(5,35,19)(6,36,20)(7,26,16)(8,27,17)(9,28,18)(10,29,13)(11,30,14)(12,25,15)>;

G:=Group( (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36), (7,10)(8,11)(9,12)(19,22)(20,23)(21,24)(25,28)(26,29)(27,30)(31,34)(32,35)(33,36), (1,4)(2,5)(3,6)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24)(25,28)(26,29)(27,30), (1,13)(2,14)(3,15)(4,16)(5,17)(6,18)(7,34)(8,35)(9,36)(10,31)(11,32)(12,33), (7,34)(8,35)(9,36)(10,31)(11,32)(12,33)(19,27)(20,28)(21,29)(22,30)(23,25)(24,26), (1,31,21)(2,32,22)(3,33,23)(4,34,24)(5,35,19)(6,36,20)(7,26,16)(8,27,17)(9,28,18)(10,29,13)(11,30,14)(12,25,15) );

G=PermutationGroup([[(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36)], [(7,10),(8,11),(9,12),(19,22),(20,23),(21,24),(25,28),(26,29),(27,30),(31,34),(32,35),(33,36)], [(1,4),(2,5),(3,6),(13,16),(14,17),(15,18),(19,22),(20,23),(21,24),(25,28),(26,29),(27,30)], [(1,13),(2,14),(3,15),(4,16),(5,17),(6,18),(7,34),(8,35),(9,36),(10,31),(11,32),(12,33)], [(7,34),(8,35),(9,36),(10,31),(11,32),(12,33),(19,27),(20,28),(21,29),(22,30),(23,25),(24,26)], [(1,31,21),(2,32,22),(3,33,23),(4,34,24),(5,35,19),(6,36,20),(7,26,16),(8,27,17),(9,28,18),(10,29,13),(11,30,14),(12,25,15)]])

48 conjugacy classes

class 1 2A2B···2K3A3B3C···3H6A6B6C···6V6W···6AB
order122···2333···3666···66···6
size113···31116···16113···316···16

48 irreducible representations

dim1111113333
type++++
imageC1C2C3C3C6C6A4C2×A4C3×A4C6×A4
kernelC6×C22⋊A4C3×C22⋊A4C2×C22⋊A4C24×C6C22⋊A4C23×C6C22×C6C2×C6C23C22
# reps116262551010

Matrix representation of C6×C22⋊A4 in GL6(𝔽7)

300000
030000
003000
000600
000060
000006
,
100000
060000
306000
000100
000060
000006
,
600000
060000
421000
000600
000060
000001
,
600000
010000
056000
000100
000010
000001
,
100000
060000
306000
000100
000010
000001
,
020000
633000
004000
000010
000001
000100

G:=sub<GL(6,GF(7))| [3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,6,0,0,0,0,0,0,6,0,0,0,0,0,0,6],[1,0,3,0,0,0,0,6,0,0,0,0,0,0,6,0,0,0,0,0,0,1,0,0,0,0,0,0,6,0,0,0,0,0,0,6],[6,0,4,0,0,0,0,6,2,0,0,0,0,0,1,0,0,0,0,0,0,6,0,0,0,0,0,0,6,0,0,0,0,0,0,1],[6,0,0,0,0,0,0,1,5,0,0,0,0,0,6,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,3,0,0,0,0,6,0,0,0,0,0,0,6,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[0,6,0,0,0,0,2,3,0,0,0,0,0,3,4,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,1,0] >;

C6×C22⋊A4 in GAP, Magma, Sage, TeX

C_6\times C_2^2\rtimes A_4
% in TeX

G:=Group("C6xC2^2:A4");
// GroupNames label

G:=SmallGroup(288,1042);
// by ID

G=gap.SmallGroup(288,1042);
# by ID

G:=PCGroup([7,-2,-3,-3,-2,2,-2,2,514,956,3036,5305]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^6=b^2=c^2=d^2=e^2=f^3=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,f*b*f^-1=b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,f*c*f^-1=b,f*d*f^-1=d*e=e*d,f*e*f^-1=d>;
// generators/relations

׿
×
𝔽